Salinity Management Update
October 18, 2017
Agenda

- Salinity Management
- Water Supply
- Long-Term Planning
- Modeling Effort
- Schedule
Salinity Management

- Maximum Benefit Plan enables use of RW (irrigation & GWR)
- Commitment to implement regional programs to manage/reduce TDS
- Region has been working for past 15+ years to meet this commitment
 - Chino Basin Desalters
 - Self-generating water softener use ordinance
 - Brine line discharge requirements
 - Chemical use optimization in the WWTP
 - Securing high quality supplemental water
Commitment No. 1: Surface Water Monitoring Program - met
Commitment No. 2: Groundwater Monitoring Program - met
Commitment No. 3: Chino Desalters I expansion & II constructed before recharge of RW - met
Commitment No. 4: Future Desalters Plan – implementation in progress
Commitment No. 5: Construct Recharge Facilities – met
 ▪ Phase I & Phase II projects
 ▪ RMPU projects
Commitment No. 6: IEUA Wastewater Quality Improvement Plan when TDS and nitrate concentration triggers exceeded – not triggered
Commitment No. 7: 5-Yr Running Average Recharge Quality - met
 ▪ TDS & NO₃-N metrics are 345 mg/L and 3 mg/L, respectively as of Dec 2016
Commitment No. 8: Hydraulic Control - met
Commitment No. 9: Ambient GW Quality Determination - met
Water Supply & Effluent TDS

12-MRA Agency-Wide Water Supply & Effluent TDS

Agency-Wide Effluent TDS

Agency-Wide Water Supply TDS

15-Yr Trend: 1.8 mg/L Annual Increase
10-Yr Trend: 4.4 mg/L Annual Increase
5-Yr Trend: 12.5 mg/L Annual Increase
State Water Project TDS Trend

- Local water supply TDS is affected by SWP TDS
- 12-year avg: +10 mg/L per year

Drought Conditions approximated based on snowpack and precipitation in Northern California versus 1922-1998 averages from the California Department of Water Resources.
Salinity Management Programs

- Industry connections to Brine Line
 - North NRWS: 39 industries; ~15k tons of salt exported annually
 - South NRWS: 14 industries; ~30k tons of salt exported annually

- Water Softener Program
 - 825 units removed since 2008
 - 149 tons of salt per year not entering the regional sewer

- Septic-to-Sewer Project
 - Currently in feasibility stage
 - Planned implementation over the next 10 – 20 years

- Recharge of Low TDS Imported Water
Long-Term Planning Projects

- Planned projects included in analysis:
 - Conservation
 - UV Conversion (5–20 yrs)
 - 2013 Recharge Master Plan Update (stormwater projects) (5–20 yrs)
 - Septic-to-sewer conversion (10–20 yrs)
 - Reverse Osmosis (10-20 yrs)
 - Increased supplemental recharge (SARCCUP) (5–20 yrs)

- Implementing projects provides a TDS reduction benefit
Scope of Work Objectives

- Develop updated modeling tools to evaluate the TDS concentrations of the Chino Basin
- Define planning scenarios
- Evaluate impacts from climate change
- Use updated modeling tools to project the TDS concentrations of the Chino Basin and perform an antidegradation analysis
- Use the results to develop and finalize a regulatory compliance strategy proposal
- Work with the Regional Board throughout this effort
Groundwater Modeling Tools

- Develop an MT3D-based numerical solute transport model that is based on the 2017 Chino Basin Watermaster MODFLOW Model
 - 2017 MODFLOW Model is an updated version of the Watermaster’s 2013 groundwater flow model
 - The 2013 model was extensively calibrated, peer reviewed, accepted by the Chino Basin parties and relied on by the Court to reset the safe yield of the Chino Basin
MT3D Model Development

• Initial condition of vadose zone based on recharge sources and associated TDS concentrations for period of 1986-2016
• Initial condition of saturated zone based on current TDS concentrations
• Develop and agree on assumptions for TDS of recharge and discharge terms in planning projections
• This MT3D model can be used to test the impacts of different TDS management strategies on future TDS concentrations in the Chino Basin
• Collaborative effort: IEUA, CBWM, Wildermuth Environmental
• Update Chino groundwater basin modeling
• Analyze projects, source water, groundwater, and climate impacts
• Work with the Regional Water Quality Control Board (RWQCB) on potential options

<table>
<thead>
<tr>
<th>Description</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop Groundwater Model</td>
<td>May 2018</td>
</tr>
<tr>
<td>Groundwater Modeling & Evaluation</td>
<td>February 2019</td>
</tr>
<tr>
<td>Proposal to RWQCB</td>
<td>April 2019</td>
</tr>
<tr>
<td>Updated Proposal</td>
<td>August 2019</td>
</tr>
<tr>
<td>Environmental Evaluation</td>
<td>November 2019</td>
</tr>
<tr>
<td>Final Documents</td>
<td>December 2019</td>
</tr>
</tbody>
</table>